# Properties

 Label 6003.5314 Modulus $6003$ Conductor $261$ Order $21$ Real no Primitive no Minimal yes Parity even

# Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(6003, base_ring=CyclotomicField(42))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([14,0,18]))

pari: [g,chi] = znchar(Mod(5314,6003))

## Basic properties

 Modulus: $$6003$$ Conductor: $$261$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$21$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{261}(94,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 6003.bh

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(668,3133,4555)$$ → $$(e\left(\frac{1}{3}\right),1,e\left(\frac{3}{7}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$7$$ $$8$$ $$10$$ $$11$$ $$13$$ $$14$$ $$16$$ $$1$$ $$1$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{1}{21}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{21})$$ Fixed field: 21.21.4814587615056751193058435502319478353721.1