Properties

Label 6003.298
Modulus $6003$
Conductor $667$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(6003)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,14,3]))
 
pari: [g,chi] = znchar(Mod(298,6003))
 

Basic properties

Modulus: \(6003\)
Conductor: \(667\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{667}(298,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6003.bq

\(\chi_{6003}(298,\cdot)\) \(\chi_{6003}(1540,\cdot)\) \(\chi_{6003}(1954,\cdot)\) \(\chi_{6003}(2161,\cdot)\) \(\chi_{6003}(2368,\cdot)\) \(\chi_{6003}(2782,\cdot)\) \(\chi_{6003}(2989,\cdot)\) \(\chi_{6003}(3403,\cdot)\) \(\chi_{6003}(3610,\cdot)\) \(\chi_{6003}(3817,\cdot)\) \(\chi_{6003}(4231,\cdot)\) \(\chi_{6003}(5473,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((668,3133,4555)\) → \((1,-1,e\left(\frac{3}{28}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\(1\)\(1\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{27}{28}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{3}{7}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.35394489068231220324814698212289719250778220848093751207381.1