Properties

Label 6003.16
Modulus $6003$
Conductor $6003$
Order $231$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(6003)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([154,84,33]))
 
pari: [g,chi] = znchar(Mod(16,6003))
 

Basic properties

Modulus: \(6003\)
Conductor: \(6003\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(231\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6003.dc

\(\chi_{6003}(16,\cdot)\) \(\chi_{6003}(25,\cdot)\) \(\chi_{6003}(49,\cdot)\) \(\chi_{6003}(52,\cdot)\) \(\chi_{6003}(94,\cdot)\) \(\chi_{6003}(169,\cdot)\) \(\chi_{6003}(223,\cdot)\) \(\chi_{6003}(256,\cdot)\) \(\chi_{6003}(400,\cdot)\) \(\chi_{6003}(430,\cdot)\) \(\chi_{6003}(538,\cdot)\) \(\chi_{6003}(547,\cdot)\) \(\chi_{6003}(616,\cdot)\) \(\chi_{6003}(625,\cdot)\) \(\chi_{6003}(634,\cdot)\) \(\chi_{6003}(745,\cdot)\) \(\chi_{6003}(790,\cdot)\) \(\chi_{6003}(808,\cdot)\) \(\chi_{6003}(832,\cdot)\) \(\chi_{6003}(877,\cdot)\) \(\chi_{6003}(886,\cdot)\) \(\chi_{6003}(922,\cdot)\) \(\chi_{6003}(952,\cdot)\) \(\chi_{6003}(1039,\cdot)\) \(\chi_{6003}(1051,\cdot)\) \(\chi_{6003}(1060,\cdot)\) \(\chi_{6003}(1093,\cdot)\) \(\chi_{6003}(1156,\cdot)\) \(\chi_{6003}(1267,\cdot)\) \(\chi_{6003}(1300,\cdot)\) ...

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((668,3133,4555)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{4}{11}\right),e\left(\frac{1}{7}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\(1\)\(1\)\(e\left(\frac{124}{231}\right)\)\(e\left(\frac{17}{231}\right)\)\(e\left(\frac{194}{231}\right)\)\(e\left(\frac{67}{231}\right)\)\(e\left(\frac{47}{77}\right)\)\(e\left(\frac{29}{77}\right)\)\(e\left(\frac{118}{231}\right)\)\(e\left(\frac{230}{231}\right)\)\(e\left(\frac{191}{231}\right)\)\(e\left(\frac{34}{231}\right)\)
value at e.g. 2

Related number fields

Field of values: $\Q(\zeta_{231})$
Fixed field: Number field defined by a degree 231 polynomial