This is the Dirichlet character of smallest modulus which is not primitive and also is nontrivial.
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1]))
pari:[g,chi] = znchar(Mod(5,6))
\(\chi_{6}(5,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(5\) → \(-1\)
\(a\) |
\(-1\) | \(1\) |
\( \chi_{ 6 }(5, a) \) |
\(-1\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)