Properties

Label 41.32
Modulus $41$
Conductor $41$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(41)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(32,41))
 

Basic properties

Modulus: \(41\)
Conductor: \(41\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 41.c

\(\chi_{41}(9,\cdot)\) \(\chi_{41}(32,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\(6\) → \(i\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(-1\)\(-i\)\(1\)\(-1\)\(i\)\(-i\)\(-1\)\(-1\)\(1\)\(-i\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: 4.4.68921.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 41 }(32,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{41}(32,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(32,r) e\left(\frac{2r}{41}\right) = 2.1194785695+6.0421693615i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 41 }(32,·),\chi_{ 41 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{41}(32,\cdot),\chi_{41}(1,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(32,r) \chi_{41}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 41 }(32,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{41}(32,·)) = \sum_{r \in \Z/41\Z} \chi_{41}(32,r) e\left(\frac{1 r + 2 r^{-1}}{41}\right) = 1.9804646361i \)