# Properties

 Label 41.27 Modulus $41$ Conductor $41$ Order $8$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(41)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([1]))

pari: [g,chi] = znchar(Mod(27,41))

## Basic properties

 Modulus: $$41$$ Conductor: $$41$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$8$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 41.e

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$6$$ → $$e\left(\frac{1}{8}\right)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$11$$ $$-1$$ $$1$$ $$i$$ $$e\left(\frac{7}{8}\right)$$ $$-1$$ $$-i$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$-i$$ $$-i$$ $$1$$ $$e\left(\frac{3}{8}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{8})$$ Fixed field: 8.0.194754273881.1

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 41 }(27,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{41}(27,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(27,r) e\left(\frac{2r}{41}\right) = 5.8660564147+-2.5669791857i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 41 }(27,·),\chi_{ 41 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{41}(27,\cdot),\chi_{41}(1,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(27,r) \chi_{41}(1,1-r) = -1$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 41 }(27,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{41}(27,·)) = \sum_{r \in \Z/41\Z} \chi_{41}(27,r) e\left(\frac{1 r + 2 r^{-1}}{41}\right) = -7.3149435242+7.3149435242i$$