Properties

Conductor 41
Order 40
Real No
Primitive Yes
Parity Odd
Orbit Label 41.h

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(41)
sage: chi = H[22]
pari: [g,chi] = znchar(Mod(22,41))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 41
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 40
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = Yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 41.h
Orbit index = 8

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{41}(6,\cdot)\) \(\chi_{41}(7,\cdot)\) \(\chi_{41}(11,\cdot)\) \(\chi_{41}(12,\cdot)\) \(\chi_{41}(13,\cdot)\) \(\chi_{41}(15,\cdot)\) \(\chi_{41}(17,\cdot)\) \(\chi_{41}(19,\cdot)\) \(\chi_{41}(22,\cdot)\) \(\chi_{41}(24,\cdot)\) \(\chi_{41}(26,\cdot)\) \(\chi_{41}(28,\cdot)\) \(\chi_{41}(29,\cdot)\) \(\chi_{41}(30,\cdot)\) \(\chi_{41}(34,\cdot)\) \(\chi_{41}(35,\cdot)\)

Values on generators

\(6\) → \(e\left(\frac{29}{40}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{11}{40}\right)\)\(e\left(\frac{11}{20}\right)\)\(-i\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{40}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{40})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 41 }(22,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{41}(22,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(22,r) e\left(\frac{2r}{41}\right) = 4.8477279588+4.1832443913i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 41 }(22,·),\chi_{ 41 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{41}(22,\cdot),\chi_{41}(1,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(22,r) \chi_{41}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 41 }(22,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{41}(22,·)) = \sum_{r \in \Z/41\Z} \chi_{41}(22,r) e\left(\frac{1 r + 2 r^{-1}}{41}\right) = -5.2354428326+-10.2751351042i \)