Properties

Label 4033.2722
Modulus $4033$
Conductor $4033$
Order $54$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(4033)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([33,53]))
 
pari: [g,chi] = znchar(Mod(2722,4033))
 

Basic properties

Modulus: \(4033\)
Conductor: \(4033\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4033.hg

\(\chi_{4033}(28,\cdot)\) \(\chi_{4033}(363,\cdot)\) \(\chi_{4033}(411,\cdot)\) \(\chi_{4033}(465,\cdot)\) \(\chi_{4033}(632,\cdot)\) \(\chi_{4033}(1320,\cdot)\) \(\chi_{4033}(1557,\cdot)\) \(\chi_{4033}(2282,\cdot)\) \(\chi_{4033}(2393,\cdot)\) \(\chi_{4033}(2722,\cdot)\) \(\chi_{4033}(3112,\cdot)\) \(\chi_{4033}(3249,\cdot)\) \(\chi_{4033}(3370,\cdot)\) \(\chi_{4033}(3462,\cdot)\) \(\chi_{4033}(3582,\cdot)\) \(\chi_{4033}(3617,\cdot)\) \(\chi_{4033}(3876,\cdot)\) \(\chi_{4033}(3889,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1963,2295)\) → \((e\left(\frac{11}{18}\right),e\left(\frac{53}{54}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{25}{27}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{13}{27}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{23}{27}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{43}{54}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial