Properties

Label 4033.24
Modulus $4033$
Conductor $4033$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(4033)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([87,7]))
 
pari: [g,chi] = znchar(Mod(24,4033))
 

Basic properties

Modulus: \(4033\)
Conductor: \(4033\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4033.hy

\(\chi_{4033}(24,\cdot)\) \(\chi_{4033}(166,\cdot)\) \(\chi_{4033}(168,\cdot)\) \(\chi_{4033}(466,\cdot)\) \(\chi_{4033}(476,\cdot)\) \(\chi_{4033}(701,\cdot)\) \(\chi_{4033}(942,\cdot)\) \(\chi_{4033}(994,\cdot)\) \(\chi_{4033}(1108,\cdot)\) \(\chi_{4033}(1132,\cdot)\) \(\chi_{4033}(1162,\cdot)\) \(\chi_{4033}(1314,\cdot)\) \(\chi_{4033}(1364,\cdot)\) \(\chi_{4033}(1482,\cdot)\) \(\chi_{4033}(1537,\cdot)\) \(\chi_{4033}(1795,\cdot)\) \(\chi_{4033}(1863,\cdot)\) \(\chi_{4033}(1948,\cdot)\) \(\chi_{4033}(2085,\cdot)\) \(\chi_{4033}(2170,\cdot)\) \(\chi_{4033}(2238,\cdot)\) \(\chi_{4033}(2496,\cdot)\) \(\chi_{4033}(2551,\cdot)\) \(\chi_{4033}(2669,\cdot)\) \(\chi_{4033}(2719,\cdot)\) \(\chi_{4033}(2871,\cdot)\) \(\chi_{4033}(2901,\cdot)\) \(\chi_{4033}(2925,\cdot)\) \(\chi_{4033}(3039,\cdot)\) \(\chi_{4033}(3091,\cdot)\) ...

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1963,2295)\) → \((e\left(\frac{29}{36}\right),e\left(\frac{7}{108}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(-1\)\(e\left(\frac{17}{54}\right)\)\(1\)\(e\left(\frac{49}{108}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{10}{27}\right)\)\(-1\)\(e\left(\frac{17}{27}\right)\)\(e\left(\frac{103}{108}\right)\)\(e\left(\frac{59}{108}\right)\)
value at e.g. 2

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial