Properties

Label 4033.12
Modulus $4033$
Conductor $4033$
Order $54$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(4033)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([42,29]))
 
pari: [g,chi] = znchar(Mod(12,4033))
 

Basic properties

Modulus: \(4033\)
Conductor: \(4033\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4033.hi

\(\chi_{4033}(12,\cdot)\) \(\chi_{4033}(292,\cdot)\) \(\chi_{4033}(847,\cdot)\) \(\chi_{4033}(959,\cdot)\) \(\chi_{4033}(974,\cdot)\) \(\chi_{4033}(978,\cdot)\) \(\chi_{4033}(1085,\cdot)\) \(\chi_{4033}(1718,\cdot)\) \(\chi_{4033}(1884,\cdot)\) \(\chi_{4033}(2486,\cdot)\) \(\chi_{4033}(2636,\cdot)\) \(\chi_{4033}(2754,\cdot)\) \(\chi_{4033}(2819,\cdot)\) \(\chi_{4033}(2895,\cdot)\) \(\chi_{4033}(3080,\cdot)\) \(\chi_{4033}(3548,\cdot)\) \(\chi_{4033}(3633,\cdot)\) \(\chi_{4033}(3697,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1963,2295)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{29}{54}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{4}{27}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{29}{54}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{8}{27}\right)\)\(e\left(\frac{5}{54}\right)\)\(e\left(\frac{49}{54}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial