# Properties

 Conductor 800 Order 40 Real No Primitive No Parity Odd Orbit Label 4000.bx

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(4000)
sage: chi = H[93]
pari: [g,chi] = znchar(Mod(93,4000))

## Basic properties

 sage: chi.conductor() pari: znconreyconductor(g,chi) Conductor = 800 sage: chi.multiplicative_order() pari: charorder(g,chi) Order = 40 Real = No sage: chi.is_primitive() pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No sage: chi.is_odd() pari: zncharisodd(g,chi) Parity = Odd Orbit label = 4000.bx Orbit index = 50

## Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(2751,2501,1377)$$ → $$(1,e\left(\frac{3}{8}\right),e\left(\frac{11}{20}\right))$$

## Values

 -1 1 3 7 9 11 13 17 19 21 23 27 $$-1$$ $$1$$ $$e\left(\frac{39}{40}\right)$$ $$-1$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{27}{40}\right)$$ $$e\left(\frac{3}{40}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{21}{40}\right)$$ $$e\left(\frac{19}{40}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{37}{40}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{40})$$