# Properties

 Modulus 4000 Conductor 160 Order 8 Real no Primitive no Minimal yes Parity odd Orbit label 4000.bc

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4000)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,7,2]))

pari: [g,chi] = znchar(Mod(557,4000))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 4000 Conductor = 160 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 8 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = odd Orbit label = 4000.bc Orbit index = 29

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(2751,2501,1377)$$ → $$(1,e\left(\frac{7}{8}\right),i)$$

## Values

 -1 1 3 7 9 11 13 17 19 21 23 27 $$-1$$ $$1$$ $$e\left(\frac{3}{8}\right)$$ $$1$$ $$-i$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$-i$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$1$$ $$e\left(\frac{1}{8}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{8})$$