# Properties

 Modulus 39 Structure $$C_{12}\times C_{2}$$ Order 24

Show commands for: Pari/GP / SageMath

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(39)

pari: g = idealstar(,39,2)

## Character group

 sage: G.order()  pari: g.no Order = 24 sage: H.invariants()  pari: g.cyc Structure = $$C_{12}\times C_{2}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{39}(28,\cdot)$, $\chi_{39}(14,\cdot)$

## Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 2 4 5 7 8 10 11 14 16 17
$$\chi_{39}(1,\cdot)$$ 39.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{39}(2,\cdot)$$ 39.k 12 yes $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{39}(4,\cdot)$$ 39.j 6 no $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{39}(5,\cdot)$$ 39.f 4 yes $$1$$ $$1$$ $$i$$ $$-1$$ $$i$$ $$i$$ $$-i$$ $$-1$$ $$-i$$ $$-1$$ $$1$$ $$1$$
$$\chi_{39}(7,\cdot)$$ 39.l 12 no $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{39}(8,\cdot)$$ 39.f 4 yes $$1$$ $$1$$ $$-i$$ $$-1$$ $$-i$$ $$-i$$ $$i$$ $$-1$$ $$i$$ $$-1$$ $$1$$ $$1$$
$$\chi_{39}(10,\cdot)$$ 39.j 6 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{39}(11,\cdot)$$ 39.k 12 yes $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{39}(14,\cdot)$$ 39.c 2 no $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{39}(16,\cdot)$$ 39.e 3 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{39}(17,\cdot)$$ 39.h 6 yes $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{39}(19,\cdot)$$ 39.l 12 no $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{39}(20,\cdot)$$ 39.k 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{1}{12}\right)$$ $$i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{39}(22,\cdot)$$ 39.e 3 no $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{39}(23,\cdot)$$ 39.h 6 yes $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{39}(25,\cdot)$$ 39.b 2 no $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$
$$\chi_{39}(28,\cdot)$$ 39.l 12 no $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{39}(29,\cdot)$$ 39.i 6 yes $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{39}(31,\cdot)$$ 39.g 4 no $$-1$$ $$1$$ $$-i$$ $$-1$$ $$-i$$ $$i$$ $$i$$ $$-1$$ $$i$$ $$1$$ $$1$$ $$-1$$
$$\chi_{39}(32,\cdot)$$ 39.k 12 yes $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{39}(34,\cdot)$$ 39.g 4 no $$-1$$ $$1$$ $$i$$ $$-1$$ $$i$$ $$-i$$ $$-i$$ $$-1$$ $$-i$$ $$1$$ $$1$$ $$-1$$
$$\chi_{39}(35,\cdot)$$ 39.i 6 yes $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{39}(37,\cdot)$$ 39.l 12 no $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{39}(38,\cdot)$$ 39.d 2 yes $$-1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$