Properties

Conductor 19
Order 18
Real No
Primitive No
Parity Odd
Orbit Label 38.f

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(38)
sage: chi = H[33]
pari: [g,chi] = znchar(Mod(33,38))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 19
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 18
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 38.f
Orbit index = 6

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{38}(3,\cdot)\) \(\chi_{38}(13,\cdot)\) \(\chi_{38}(15,\cdot)\) \(\chi_{38}(21,\cdot)\) \(\chi_{38}(29,\cdot)\) \(\chi_{38}(33,\cdot)\)

Inducing primitive character

\(\chi_{19}(14,\cdot)\)

Values on generators

\(21\) → \(e\left(\frac{7}{18}\right)\)

Values

-113579111315172123
\(-1\)\(1\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{9})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 38 }(33,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{38}(33,\cdot)) = \sum_{r\in \Z/38\Z} \chi_{38}(33,r) e\left(\frac{r}{19}\right) = -4.3525155513+0.235814283i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 38 }(33,·),\chi_{ 38 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{38}(33,\cdot),\chi_{38}(1,\cdot)) = \sum_{r\in \Z/38\Z} \chi_{38}(33,r) \chi_{38}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 38 }(33,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{38}(33,·)) = \sum_{r \in \Z/38\Z} \chi_{38}(33,r) e\left(\frac{1 r + 2 r^{-1}}{38}\right) = -3.697859858+1.3459109188i \)