Properties

Label 38.27
Modulus $38$
Conductor $19$
Order $6$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(38, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(27,38))
 

Basic properties

Modulus: \(38\)
Conductor: \(19\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{19}(8,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 38.d

\(\chi_{38}(27,\cdot)\) \(\chi_{38}(31,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\(21\) → \(e\left(\frac{1}{6}\right)\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\(-1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: 6.0.2476099.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 38 }(27,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{38}(27,\cdot)) = \sum_{r\in \Z/38\Z} \chi_{38}(27,r) e\left(\frac{r}{19}\right) = -4.3380301603+-0.4260215112i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 38 }(27,·),\chi_{ 38 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{38}(27,\cdot),\chi_{38}(1,\cdot)) = \sum_{r\in \Z/38\Z} \chi_{38}(27,r) \chi_{38}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 38 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{38}(27,·)) = \sum_{r \in \Z/38\Z} \chi_{38}(27,r) e\left(\frac{1 r + 2 r^{-1}}{38}\right) = 2.3517847842+-4.0734107347i \)