sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(38, base_ring=CyclotomicField(6))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([1]))
pari: [g,chi] = znchar(Mod(27,38))
Basic properties
Modulus: | \(38\) | |
Conductor: | \(19\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(6\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{19}(8,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 38.d
\(\chi_{38}(27,\cdot)\) \(\chi_{38}(31,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\(21\) → \(e\left(\frac{1}{6}\right)\)
Values
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
Related number fields
Field of values: | \(\Q(\sqrt{-3}) \) |
Fixed field: | 6.0.2476099.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{38}(27,\cdot)) = \sum_{r\in \Z/38\Z} \chi_{38}(27,r) e\left(\frac{r}{19}\right) = -4.3380301603+-0.4260215112i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{38}(27,\cdot),\chi_{38}(1,\cdot)) = \sum_{r\in \Z/38\Z} \chi_{38}(27,r) \chi_{38}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{38}(27,·))
= \sum_{r \in \Z/38\Z}
\chi_{38}(27,r) e\left(\frac{1 r + 2 r^{-1}}{38}\right)
= 2.3517847842+-4.0734107347i \)