Properties

Conductor 37
Order 36
Real No
Primitive Yes
Parity Odd
Orbit Label 37.i

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(37)
sage: chi = H[5]
pari: [g,chi] = znchar(Mod(5,37))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 37
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 36
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = Yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 37.i
Orbit index = 9

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{37}(2,\cdot)\) \(\chi_{37}(5,\cdot)\) \(\chi_{37}(13,\cdot)\) \(\chi_{37}(15,\cdot)\) \(\chi_{37}(17,\cdot)\) \(\chi_{37}(18,\cdot)\) \(\chi_{37}(19,\cdot)\) \(\chi_{37}(20,\cdot)\) \(\chi_{37}(22,\cdot)\) \(\chi_{37}(24,\cdot)\) \(\chi_{37}(32,\cdot)\) \(\chi_{37}(35,\cdot)\)

Values on generators

\(2\) → \(e\left(\frac{23}{36}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{25}{36}\right)\)\(i\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{36})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 37 }(5,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{37}(5,\cdot)) = \sum_{r\in \Z/37\Z} \chi_{37}(5,r) e\left(\frac{2r}{37}\right) = 2.8263873514+-5.3862356558i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 37 }(5,·),\chi_{ 37 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{37}(5,\cdot),\chi_{37}(1,\cdot)) = \sum_{r\in \Z/37\Z} \chi_{37}(5,r) \chi_{37}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 37 }(5,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{37}(5,·)) = \sum_{r \in \Z/37\Z} \chi_{37}(5,r) e\left(\frac{1 r + 2 r^{-1}}{37}\right) = 10.5939459232+4.940038114i \)