Properties

Modulus 37
Conductor 37
Order 12
Real no
Primitive yes
Minimal yes
Parity odd
Orbit label 37.g

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(37)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([11]))
 
pari: [g,chi] = znchar(Mod(14,37))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 37
Conductor = 37
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 12
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 37.g
Orbit index = 7

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{37}(8,\cdot)\) \(\chi_{37}(14,\cdot)\) \(\chi_{37}(23,\cdot)\) \(\chi_{37}(29,\cdot)\)

Values on generators

\(2\) → \(e\left(\frac{11}{12}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(1\)\(-1\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{12})\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 37 }(14,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{37}(14,\cdot)) = \sum_{r\in \Z/37\Z} \chi_{37}(14,r) e\left(\frac{2r}{37}\right) = 4.0148590516+4.5695630859i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 37 }(14,·),\chi_{ 37 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{37}(14,\cdot),\chi_{37}(1,\cdot)) = \sum_{r\in \Z/37\Z} \chi_{37}(14,r) \chi_{37}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 37 }(14,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{37}(14,·)) = \sum_{r \in \Z/37\Z} \chi_{37}(14,r) e\left(\frac{1 r + 2 r^{-1}}{37}\right) = 0.1201679671+0.4484729587i \)