Properties

Conductor 400
Order 20
Real No
Primitive No
Parity Odd
Orbit Label 3600.en

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(3600)
sage: chi = H[91]
pari: [g,chi] = znchar(Mod(91,3600))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 400
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 20
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 3600.en
Orbit index = 118

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{3600}(91,\cdot)\) \(\chi_{3600}(811,\cdot)\) \(\chi_{3600}(1171,\cdot)\) \(\chi_{3600}(1531,\cdot)\) \(\chi_{3600}(1891,\cdot)\) \(\chi_{3600}(2611,\cdot)\) \(\chi_{3600}(2971,\cdot)\) \(\chi_{3600}(3331,\cdot)\)

Inducing primitive character

\(\chi_{400}(91,\cdot)\)

Values on generators

\((3151,901,2801,577)\) → \((-1,i,1,e\left(\frac{1}{5}\right))\)

Values

-117111317192329313741
\(-1\)\(1\)\(1\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{3}{10}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{20})\)