# Properties

 Modulus 3600 Conductor 1800 Order 60 Real no Primitive no Minimal no Parity odd Orbit label 3600.fl

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3600)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,30,40,57]))

pari: [g,chi] = znchar(Mod(313,3600))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 3600 Conductor = 1800 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 60 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = no sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = odd Orbit label = 3600.fl Orbit index = 142

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(3151,901,2801,577)$$ → $$(1,-1,e\left(\frac{2}{3}\right),e\left(\frac{19}{20}\right))$$

## Values

 -1 1 7 11 13 17 19 23 29 31 37 41 $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{53}{60}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{47}{60}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{2}{15}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{60})$$