Properties

Modulus 3600
Conductor 1800
Order 60
Real no
Primitive no
Minimal no
Parity odd
Orbit label 3600.fm

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(3600)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([30,30,50,33]))
 
pari: [g,chi] = znchar(Mod(23,3600))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 3600
Conductor = 1800
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 60
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = no
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 3600.fm
Orbit index = 143

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{3600}(23,\cdot)\) \(\chi_{3600}(167,\cdot)\) \(\chi_{3600}(263,\cdot)\) \(\chi_{3600}(887,\cdot)\) \(\chi_{3600}(983,\cdot)\) \(\chi_{3600}(1127,\cdot)\) \(\chi_{3600}(1463,\cdot)\) \(\chi_{3600}(1703,\cdot)\) \(\chi_{3600}(1847,\cdot)\) \(\chi_{3600}(2183,\cdot)\) \(\chi_{3600}(2327,\cdot)\) \(\chi_{3600}(2423,\cdot)\) \(\chi_{3600}(2567,\cdot)\) \(\chi_{3600}(2903,\cdot)\) \(\chi_{3600}(3047,\cdot)\) \(\chi_{3600}(3287,\cdot)\)

Values on generators

\((3151,901,2801,577)\) → \((-1,-1,e\left(\frac{5}{6}\right),e\left(\frac{11}{20}\right))\)

Values

-117111317192329313741
\(-1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{43}{60}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{30}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{60})\)