Properties

Conductor 11
Order 10
Real No
Primitive No
Parity Odd
Orbit Label 33.g

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(33)
sage: chi = H[28]
pari: [g,chi] = znchar(Mod(28,33))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 11
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 10
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 33.g
Orbit index = 7

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{33}(7,\cdot)\) \(\chi_{33}(13,\cdot)\) \(\chi_{33}(19,\cdot)\) \(\chi_{33}(28,\cdot)\)

Inducing primitive character

\(\chi_{11}(6,\cdot)\)

Values on generators

\((23,13)\) → \((1,e\left(\frac{9}{10}\right))\)

Values

-11245781013141617
\(-1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(-1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{10}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{5})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 33 }(28,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{33}(28,\cdot)) = \sum_{r\in \Z/33\Z} \chi_{33}(28,r) e\left(\frac{2r}{33}\right) = 3.3158232425+0.0729124433i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 33 }(28,·),\chi_{ 33 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{33}(28,\cdot),\chi_{33}(1,\cdot)) = \sum_{r\in \Z/33\Z} \chi_{33}(28,r) \chi_{33}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 33 }(28,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{33}(28,·)) = \sum_{r \in \Z/33\Z} \chi_{33}(28,r) e\left(\frac{1 r + 2 r^{-1}}{33}\right) = 0.1729543846+0.5322988621i \)