Properties

Label 300.19
Modulus $300$
Conductor $100$
Order $10$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(300, base_ring=CyclotomicField(10))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([5,0,9]))
 
pari: [g,chi] = znchar(Mod(19,300))
 

Basic properties

Modulus: \(300\)
Conductor: \(100\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{100}(19,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 300.t

\(\chi_{300}(19,\cdot)\) \(\chi_{300}(79,\cdot)\) \(\chi_{300}(139,\cdot)\) \(\chi_{300}(259,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((151,101,277)\) → \((-1,1,e\left(\frac{9}{10}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\(-1\)\(1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{5}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.781250000000000.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 300 }(19,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{300}(19,\cdot)) = \sum_{r\in \Z/300\Z} \chi_{300}(19,r) e\left(\frac{r}{150}\right) = 0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 300 }(19,·),\chi_{ 300 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{300}(19,\cdot),\chi_{300}(1,\cdot)) = \sum_{r\in \Z/300\Z} \chi_{300}(19,r) \chi_{300}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 300 }(19,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{300}(19,·)) = \sum_{r \in \Z/300\Z} \chi_{300}(19,r) e\left(\frac{1 r + 2 r^{-1}}{300}\right) = 0.0 \)