Properties

Conductor 13
Order 3
Real no
Primitive no
Minimal yes
Parity even
Orbit label 26.c

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(26)
 
sage: chi = H[3]
 
pari: [g,chi] = znchar(Mod(3,26))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 13
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 3
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 26.c
Orbit index = 3

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{26}(3,\cdot)\) \(\chi_{26}(9,\cdot)\)

Values on generators

\(15\) → \(e\left(\frac{1}{3}\right)\)

Values

-113579111517192123
\(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 26 }(3,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{26}(3,\cdot)) = \sum_{r\in \Z/26\Z} \chi_{26}(3,r) e\left(\frac{r}{13}\right) = 0.9108358324+3.4886068977i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 26 }(3,·),\chi_{ 26 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{26}(3,\cdot),\chi_{26}(1,\cdot)) = \sum_{r\in \Z/26\Z} \chi_{26}(3,r) \chi_{26}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 26 }(3,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{26}(3,·)) = \sum_{r \in \Z/26\Z} \chi_{26}(3,r) e\left(\frac{1 r + 2 r^{-1}}{26}\right) = 2.8740276865+4.9779619754i \)