Properties

Modulus 26
Structure \(C_{12}\)
Order 12

Learn more about

Show commands for: Pari/GP / SageMath

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(26)
 
pari: g = idealstar(,26,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 12
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{26}(15,\cdot)$

Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 3 5 7 9 11 15 17 19 21 23
\(\chi_{26}(1,\cdot)\) 26.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{26}(3,\cdot)\) 26.c 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{26}(5,\cdot)\) 26.d 4 no \(-1\) \(1\) \(1\) \(-i\) \(i\) \(1\) \(i\) \(-i\) \(-1\) \(-i\) \(i\) \(-1\)
\(\chi_{26}(7,\cdot)\) 26.f 12 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{26}(9,\cdot)\) 26.c 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{26}(11,\cdot)\) 26.f 12 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{26}(15,\cdot)\) 26.f 12 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{26}(17,\cdot)\) 26.e 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{26}(19,\cdot)\) 26.f 12 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{26}(21,\cdot)\) 26.d 4 no \(-1\) \(1\) \(1\) \(i\) \(-i\) \(1\) \(-i\) \(i\) \(-1\) \(i\) \(-i\) \(-1\)
\(\chi_{26}(23,\cdot)\) 26.e 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{26}(25,\cdot)\) 26.b 2 no \(1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\)