Properties

Label 2001.s
Modulus $2001$
Conductor $2001$
Order $14$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2001, base_ring=CyclotomicField(14))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([7,7,8]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(344,2001))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2001\)
Conductor: \(2001\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{2001}(344,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{2001}(413,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{2001}(1241,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{2001}(1379,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{2001}(1586,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{2001}(1793,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\)