sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(2001, base_ring=CyclotomicField(22))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,12,11]))
pari: [g,chi] = znchar(Mod(202,2001))
Basic properties
Modulus: | \(2001\) | |
Conductor: | \(667\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(22\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{667}(202,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2001.y
\(\chi_{2001}(202,\cdot)\) \(\chi_{2001}(289,\cdot)\) \(\chi_{2001}(376,\cdot)\) \(\chi_{2001}(463,\cdot)\) \(\chi_{2001}(637,\cdot)\) \(\chi_{2001}(811,\cdot)\) \(\chi_{2001}(1159,\cdot)\) \(\chi_{2001}(1246,\cdot)\) \(\chi_{2001}(1507,\cdot)\) \(\chi_{2001}(1681,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((668,1132,553)\) → \((1,e\left(\frac{6}{11}\right),-1)\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | 22.22.20937975979670626213353681795476767790826629.1 |