Properties

Label 2001.1393
Modulus $2001$
Conductor $23$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2001, base_ring=CyclotomicField(22))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,14,0]))
 
pari: [g,chi] = znchar(Mod(1393,2001))
 

Basic properties

Modulus: \(2001\)
Conductor: \(23\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(11\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{23}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2001.n

\(\chi_{2001}(262,\cdot)\) \(\chi_{2001}(349,\cdot)\) \(\chi_{2001}(610,\cdot)\) \(\chi_{2001}(784,\cdot)\) \(\chi_{2001}(1306,\cdot)\) \(\chi_{2001}(1393,\cdot)\) \(\chi_{2001}(1480,\cdot)\) \(\chi_{2001}(1567,\cdot)\) \(\chi_{2001}(1741,\cdot)\) \(\chi_{2001}(1915,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{23})^+\)

Values on generators

\((668,1132,553)\) → \((1,e\left(\frac{7}{11}\right),1)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\(1\)\(1\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{1}{11}\right)\)
value at e.g. 2