# Properties

 Conductor 1 Order 1 Real Yes Primitive No Parity Even

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(2)
sage: chi = H[1]
pari: [g,chi] = znchar(Mod(1,2))

## Inducingprimitive character

sage: sage: chi.primitive_character()
pari: znconreyconductor(g,chi,&chi0)
pari: chi0

 1 1
value at  e.g. 2

## Basic properties

 sage: chi.conductor() pari: znconreyconductor(g,chi) Conductor = 1 sage: chi.multiplicative_order() pari: charorder(g,chi) Order = 1 sage: chi.is_odd() pari: zncharisodd(g,chi) Parity = Even Real = Yes sage: chi.is_primitive() pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No

## Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values $\Q$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
$\tau_{ a }( \chi_{ 2 }(1,·) )\;$ at $\;a =$ e.g. 2
$\displaystyle \tau_{2}(\chi_{2}(1,\cdot)) = \sum_{r\in \Z/2\Z} \chi_{2}(1,r) e\left(\frac{r}{1}\right) = 1.0.$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
$J(\chi_{ 2 }(1,·),\chi_{ 2 }(n,·)) \;$ for $\; n =$ e.g. 1
$\displaystyle J(\chi_{2}(1,\cdot),\chi_{2}(1,\cdot)) = \sum_{r\in \Z/2\Z} \chi_{2}(1,r) \chi_{2}(1,1-r) = 0.$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
$K(a,b,\chi_{ 2 }(1,·)) \;$ at $\; a,b =$ e.g. 1,2
$\displaystyle K(1,2,\chi_{2}(1,·)) = \sum_{r \in \Z/2\Z} \chi_{2}(1,r) e\left(\frac{1 r + 2 r^{-1}}{2}\right) = -1.0.$