Properties

Conductor 27
Order 9
Real No
Primitive No
Parity Even
Orbit Label 189.v

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(189)
sage: chi = H[22]
pari: [g,chi] = znchar(Mod(22,189))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 27
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 9
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 189.v
Orbit index = 22

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{189}(22,\cdot)\) \(\chi_{189}(43,\cdot)\) \(\chi_{189}(85,\cdot)\) \(\chi_{189}(106,\cdot)\) \(\chi_{189}(148,\cdot)\) \(\chi_{189}(169,\cdot)\)

Inducing primitive character

\(\chi_{27}(22,\cdot)\)

Values on generators

\((29,136)\) → \((e\left(\frac{7}{9}\right),1)\)

Values

-112458101113161719
\(1\)\(1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{9})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 189 }(22,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{189}(22,\cdot)) = \sum_{r\in \Z/189\Z} \chi_{189}(22,r) e\left(\frac{2r}{189}\right) = 4.9778595253+-1.4902733125i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 189 }(22,·),\chi_{ 189 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{189}(22,\cdot),\chi_{189}(1,\cdot)) = \sum_{r\in \Z/189\Z} \chi_{189}(22,r) \chi_{189}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 189 }(22,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{189}(22,·)) = \sum_{r \in \Z/189\Z} \chi_{189}(22,r) e\left(\frac{1 r + 2 r^{-1}}{189}\right) = -0.0 \)