# Properties

 Modulus 17 Structure $$C_{16}$$ Order 16

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(17)
pari: g = idealstar(,17,2)

## Character group

 sage: G.order() pari: g.no Order = 16 sage: H.invariants() pari: g.cyc Structure = $$C_{16}$$ sage: H.gens() pari: g.gen Generators = $\chi_{17}(3,\cdot)$

## Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 2 3 4 5 6 7 8 9 10 11
$$\chi_{17}(1,\cdot)$$ 17.a 1 No $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{17}(2,\cdot)$$ 17.d 8 Yes $$1$$ $$1$$ $$i$$ $$e\left(\frac{7}{8}\right)$$ $$-1$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$-i$$ $$-i$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{1}{8}\right)$$
$$\chi_{17}(3,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$-i$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{7}{16}\right)$$
$$\chi_{17}(4,\cdot)$$ 17.c 4 Yes $$1$$ $$1$$ $$-1$$ $$-i$$ $$1$$ $$-i$$ $$i$$ $$i$$ $$-1$$ $$-1$$ $$i$$ $$i$$
$$\chi_{17}(5,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$-i$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{3}{16}\right)$$
$$\chi_{17}(6,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$i$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{9}{16}\right)$$
$$\chi_{17}(7,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$i$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$
$$\chi_{17}(8,\cdot)$$ 17.d 8 Yes $$1$$ $$1$$ $$-i$$ $$e\left(\frac{5}{8}\right)$$ $$-1$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$i$$ $$i$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$
$$\chi_{17}(9,\cdot)$$ 17.d 8 Yes $$1$$ $$1$$ $$-i$$ $$e\left(\frac{1}{8}\right)$$ $$-1$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$i$$ $$i$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$
$$\chi_{17}(10,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$i$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{5}{16}\right)$$
$$\chi_{17}(11,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$i$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{5}{16}\right)$$ $$e\left(\frac{1}{16}\right)$$
$$\chi_{17}(12,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$-i$$ $$e\left(\frac{1}{16}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{11}{16}\right)$$
$$\chi_{17}(13,\cdot)$$ 17.c 4 Yes $$1$$ $$1$$ $$-1$$ $$i$$ $$1$$ $$i$$ $$-i$$ $$-i$$ $$-1$$ $$-1$$ $$-i$$ $$-i$$
$$\chi_{17}(14,\cdot)$$ 17.e 16 Yes $$-1$$ $$1$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$-i$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{7}{16}\right)$$ $$e\left(\frac{3}{16}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$
$$\chi_{17}(15,\cdot)$$ 17.d 8 Yes $$1$$ $$1$$ $$i$$ $$e\left(\frac{3}{8}\right)$$ $$-1$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$-i$$ $$-i$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$
$$\chi_{17}(16,\cdot)$$ 17.b 2 Yes $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$