Properties

Label 128.3
Modulus $128$
Conductor $128$
Order $32$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(128)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([16,3]))
 
pari: [g,chi] = znchar(Mod(3,128))
 

Basic properties

Modulus: \(128\)
Conductor: \(128\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(32\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 128.l

\(\chi_{128}(3,\cdot)\) \(\chi_{128}(11,\cdot)\) \(\chi_{128}(19,\cdot)\) \(\chi_{128}(27,\cdot)\) \(\chi_{128}(35,\cdot)\) \(\chi_{128}(43,\cdot)\) \(\chi_{128}(51,\cdot)\) \(\chi_{128}(59,\cdot)\) \(\chi_{128}(67,\cdot)\) \(\chi_{128}(75,\cdot)\) \(\chi_{128}(83,\cdot)\) \(\chi_{128}(91,\cdot)\) \(\chi_{128}(99,\cdot)\) \(\chi_{128}(107,\cdot)\) \(\chi_{128}(115,\cdot)\) \(\chi_{128}(123,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((127,5)\) → \((-1,e\left(\frac{3}{32}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\(-1\)\(1\)\(e\left(\frac{25}{32}\right)\)\(e\left(\frac{3}{32}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{15}{32}\right)\)\(e\left(\frac{13}{32}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{21}{32}\right)\)\(e\left(\frac{7}{32}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{32})\)
Fixed field: 32.0.3138550867693340381917894711603833208051177722232017256448.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 128 }(3,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{128}(3,\cdot)) = \sum_{r\in \Z/128\Z} \chi_{128}(3,r) e\left(\frac{r}{64}\right) = 0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 128 }(3,·),\chi_{ 128 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{128}(3,\cdot),\chi_{128}(1,\cdot)) = \sum_{r\in \Z/128\Z} \chi_{128}(3,r) \chi_{128}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 128 }(3,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{128}(3,·)) = \sum_{r \in \Z/128\Z} \chi_{128}(3,r) e\left(\frac{1 r + 2 r^{-1}}{128}\right) = -10.9746508335+2.7490069265i \)