Properties

Conductor 1
Order 1
Real Yes
Primitive No
Parity Even
Orbit Label 121.a

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(121)
sage: chi = H[1]
pari: [g,chi] = znchar(Mod(1,121))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 1
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 1
Real = Yes
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 121.a
Orbit index = 1

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{121}(1,\cdot)\)

Inducing primitive character

\(\chi_{1}(1,\cdot)\)

Values on generators

\(2\) → \(1\)

Values

-11234567891012
\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)
value at  e.g. 2

Related number fields

Field of values \(\Q\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 121 }(1,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{121}(1,\cdot)) = \sum_{r\in \Z/121\Z} \chi_{121}(1,r) e\left(\frac{2r}{121}\right) = 0.0 \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 121 }(1,·),\chi_{ 121 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{121}(1,\cdot),\chi_{121}(1,\cdot)) = \sum_{r\in \Z/121\Z} \chi_{121}(1,r) \chi_{121}(1,1-r) = 99 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 121 }(1,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{121}(1,·)) = \sum_{r \in \Z/121\Z} \chi_{121}(1,r) e\left(\frac{1 r + 2 r^{-1}}{121}\right) = 0.0 \)