Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(10063)
 
sage: chi = H[10062]
 
pari: [g,chi] = znchar(Mod(10062,10063))
 

Kronecker symbol representation

sage: kronecker_character(-10063)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-10063}{\bullet}\right)\)

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 10063
Conductor = 10063
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 2
Real = yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{10063}(10062,\cdot)\)

Values on generators

sage: chi(k) for k in H.gens()
 
pari: [ chareval(g,chi,x) | x <- g.gen ] \\ value in Q/Z
 

\((5554,10062)\) → \((1,-1)\)

First values

123456789101112131415161718192021222324252627283031
11\(-1\)1\(-1\)\(-1\)\(-1\)11\(-1\)\(-1\)\(-1\)1\(-1\)11111\(-1\)1\(-1\)\(-1\)\(-1\)11\(-1\)\(-1\)1\(-1\)
value at  e.g. 2

Related number fields

Field of values \(\Q\)