Results: displaying matches 1-10 of 1730

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
8.2e8_7e10.9t32.1c1 $8$ $ 2^{8} \cdot 7^{10}$ x9 - x8 - 4x7 + 28x3 + 26x2 + 9x + 1 $\mathrm{P}\Gamma\mathrm{L}(2,8)$ $1$ $0$
8.2e6_3e6_11e6.21t14.1c1 $8$ $ 2^{6} \cdot 3^{6} \cdot 11^{6}$ x7 - x6 - 9x5 - x4 + 19x3 + 21x2 - 23x - 13 $\GL(3,2)$ $1$ $0$
8.2e18_11e6.21t14.1c1 $8$ $ 2^{18} \cdot 11^{6}$ x7 - x6 + 2x5 - 12x4 - 14x3 + 10x2 + 10x - 2 $\GL(3,2)$ $1$ $0$
8.2e12_23e6.24t332.1c1 $8$ $ 2^{12} \cdot 23^{6}$ x8 - 2x7 + 2x6 - 4x5 + 5x4 - 4x3 + 2x2 - 2x + 1 $Q_8:S_4$ $1$ $0$
8.2e10_3e6_7e7.42t81.1c1 $8$ $ 2^{10} \cdot 3^{6} \cdot 7^{7}$ x8 - 4x7 + 21x4 - 18x + 9 $\PGL(2,7)$ $1$ $-2$
8.2e10_3e6_7e7.21t20.1c1 $8$ $ 2^{10} \cdot 3^{6} \cdot 7^{7}$ x8 - 4x7 + 21x4 - 18x + 9 $\PGL(2,7)$ $1$ $2$
8.2e6_317e4.21t14.1c1 $8$ $ 2^{6} \cdot 317^{4}$ x7 - 2x6 + 2x4 - 2x3 + 2x2 - 2 $\GL(3,2)$ $1$ $0$
8.2e10_5e4_11e6.21t14.2c1 $8$ $ 2^{10} \cdot 5^{4} \cdot 11^{6}$ x7 - x6 - 9x5 - x4 + 8x3 - 12x2 - 12x - 2 $\GL(3,2)$ $1$ $0$
8.11e6_31e4.21t14.1c1 $8$ $ 11^{6} \cdot 31^{4}$ x7 - 11x5 - 22x4 + 33x2 + 33x + 11 $\GL(3,2)$ $1$ $0$
8.17e2_283e4.24t1151.1c1 $8$ $ 17^{2} \cdot 283^{4}$ x8 - x7 + 2x6 - 3x5 + 3x4 - 3x3 + 2x2 - x + 1 $C_2 \wr S_4$ $1$ $0$
Next