Learn more about

Results (displaying matches 1-50 of at least 1000) Next

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
5.14731.6t16.1c1 $5$ $ 14731 $ x6 - x5 + x3 - x2 + 1 $S_6$ $1$ $-1$
5.20627.6t16.1c1 $5$ $ 20627 $ x6 - x5 + x4 - 2x3 + 2x2 - x + 1 $S_6$ $1$ $-1$
5.22291.6t16.1c1 $5$ $ 22291 $ x6 + x4 - x3 - x + 1 $S_6$ $1$ $-1$
5.25747.6t16.1c1 $5$ $ 25747 $ x6 - x5 + 2x4 - 2x3 + 3x2 - x + 1 $S_6$ $1$ $-1$
5.83_337.6t16.1c1 $5$ $ 83 \cdot 337 $ x6 - x5 + x4 - 2x3 + 3x2 - 2x + 1 $S_6$ $1$ $-1$
5.29077.6t16.1c1 $5$ $ 29077 $ x6 - x5 + x4 - x2 + 2x - 1 $S_6$ $1$ $1$
5.17e2_101.6t16.1c1 $5$ $ 17^{2} \cdot 101 $ x6 - 2x5 + x4 + x3 - 2x2 + x + 1 $S_6$ $1$ $1$
5.2e3_3851.6t16.1c1 $5$ $ 2^{3} \cdot 3851 $ x6 - x4 - x3 + x2 + x + 1 $S_6$ $1$ $-1$
5.163_191.6t16.1c1 $5$ $ 163 \cdot 191 $ x6 - 2x4 - x3 + 2x + 1 $S_6$ $1$ $1$
5.31223.6t16.1c1 $5$ $ 31223 $ x6 - x5 + x4 - x3 + 2x2 - x + 1 $S_6$ $1$ $-1$
5.37_857.6t16.1c1 $5$ $ 37 \cdot 857 $ x6 - x5 + 2x3 - 2x2 + 1 $S_6$ $1$ $1$
5.53_607.6t16.1c1 $5$ $ 53 \cdot 607 $ x6 - x5 + 2x4 - x3 + x2 + 1 $S_6$ $1$ $-1$
5.32911.6t16.1c1 $5$ $ 32911 $ x6 - x3 - x2 + x + 1 $S_6$ $1$ $-1$
5.33791.6t16.1c1 $5$ $ 33791 $ x6 - x5 + x4 + x3 + x + 1 $S_6$ $1$ $-1$
5.35099.6t16.1c1 $5$ $ 35099 $ x6 + x4 + x2 - x + 1 $S_6$ $1$ $-1$
5.36107.6t16.1c1 $5$ $ 36107 $ x6 - 2x5 + x4 - x2 + x + 1 $S_6$ $1$ $-1$
5.5_7247.6t16.1c1 $5$ $ 5 \cdot 7247 $ x6 - x5 + x2 - x + 1 $S_6$ $1$ $-1$
5.37253.6t16.1c1 $5$ $ 37253 $ x6 - x4 + x2 - x - 1 $S_6$ $1$ $1$
5.37423.6t16.1c1 $5$ $ 37423 $ x6 - x5 + x4 + 1 $S_6$ $1$ $-1$
5.37463.6t16.1c1 $5$ $ 37463 $ x6 - x4 - x3 + 2x2 + 2x + 1 $S_6$ $1$ $-1$
5.2e6_587.6t16.1c1 $5$ $ 2^{6} \cdot 587 $ x6 - 2x5 + 2x4 - x2 + 2x - 1 $S_6$ $1$ $1$
5.107_367.6t16.1c1 $5$ $ 107 \cdot 367 $ x6 - x5 - 2x4 + 2x3 - 2x + 1 $S_6$ $1$ $1$
5.40277.6t16.1c1 $5$ $ 40277 $ x6 - x5 + 2x3 - 3x2 + 3x - 1 $S_6$ $1$ $1$
5.40543.6t16.1c1 $5$ $ 40543 $ x6 - 2x5 + 3x4 - 3x3 + 4x2 - 2x + 1 $S_6$ $1$ $-1$
5.7_5867.6t16.1c1 $5$ $ 7 \cdot 5867 $ x6 - 2x4 + 2x2 - x - 1 $S_6$ $1$ $1$
5.2e2_71_149.6t16.1c1 $5$ $ 2^{2} \cdot 71 \cdot 149 $ x6 - x3 + x + 1 $S_6$ $1$ $-1$
5.43063.6t16.1c1 $5$ $ 43063 $ x6 - x3 + x2 + 1 $S_6$ $1$ $-1$
5.101_431.6t16.1c1 $5$ $ 101 \cdot 431 $ x6 - x + 1 $S_6$ $1$ $-1$
5.31_1433.6t16.1c1 $5$ $ 31 \cdot 1433 $ x6 - 2x5 + 2x4 - x2 + x + 1 $S_6$ $1$ $-1$
5.17_2659.6t16.1c1 $5$ $ 17 \cdot 2659 $ x6 - x5 + x4 + x2 - 2x + 1 $S_6$ $1$ $-1$
5.41_1103.6t16.1c1 $5$ $ 41 \cdot 1103 $ x6 - x5 - x4 - x3 + 2x2 + x + 1 $S_6$ $1$ $-1$
5.89_509.6t16.1c1 $5$ $ 89 \cdot 509 $ x6 - x5 + x4 + x - 1 $S_6$ $1$ $1$
5.2e2_31_367.6t16.1c1 $5$ $ 2^{2} \cdot 31 \cdot 367 $ x6 + x4 - x3 + 3x2 - x + 1 $S_6$ $1$ $-1$
5.2e4_47_61.6t16.1c1 $5$ $ 2^{4} \cdot 47 \cdot 61 $ x6 - x5 - x3 + x + 1 $S_6$ $1$ $-1$
5.11_4241.6t16.1c1 $5$ $ 11 \cdot 4241 $ x6 - 2x5 + 2x4 - x3 + 1 $S_6$ $1$ $-1$
5.46757.6t16.1c1 $5$ $ 46757 $ x6 - x5 + 2x3 - 2x2 + 2x - 1 $S_6$ $1$ $1$
5.47149.6t16.1c1 $5$ $ 47149 $ x6 - x5 + 3x4 - 2x3 + x2 - 1 $S_6$ $1$ $1$
5.2e6_743.6t16.1c1 $5$ $ 2^{6} \cdot 743 $ x6 - 2x5 + 2x4 - 2x3 + x2 + 1 $S_6$ $1$ $-1$
5.73_653.6t16.1c1 $5$ $ 73 \cdot 653 $ x6 - x5 + x4 - x2 - 1 $S_6$ $1$ $1$
5.47933.6t16.1c1 $5$ $ 47933 $ x6 - 2x5 + 2x4 - x3 - 1 $S_6$ $1$ $1$
5.5_9923.6t16.1c1 $5$ $ 5 \cdot 9923 $ x6 - 2x5 + 3x4 - x3 + 1 $S_6$ $1$ $-1$
5.67_743.6t16.1c1 $5$ $ 67 \cdot 743 $ x6 - x - 1 $S_6$ $1$ $1$
5.131_383.6t16.1c1 $5$ $ 131 \cdot 383 $ x6 - x5 + x4 + 2x3 - 4x2 + 3x - 1 $S_6$ $1$ $1$
5.50587.6t16.1c1 $5$ $ 50587 $ x6 - x5 + 2x4 - 2x3 + 2x2 + 1 $S_6$ $1$ $-1$
5.73_709.6t16.1c1 $5$ $ 73 \cdot 709 $ x6 - 2x3 - 2x2 + x + 1 $S_6$ $1$ $1$
5.51869.6t16.1c1 $5$ $ 51869 $ x6 - 2x5 + x4 + x3 - 2x2 + x - 1 $S_6$ $1$ $1$
5.167_313.6t16.1c1 $5$ $ 167 \cdot 313 $ x6 - x5 + x4 - x3 + 1 $S_6$ $1$ $-1$
5.227_233.6t16.1c1 $5$ $ 227 \cdot 233 $ x6 - x5 + 2x4 - x3 + x2 - 2x + 1 $S_6$ $1$ $-1$
5.7_13_601.6t16.1c1 $5$ $ 7 \cdot 13 \cdot 601 $ x6 - x5 - 2x3 + 2x2 + 1 $S_6$ $1$ $-1$
5.2e4_3461.6t16.1c1 $5$ $ 2^{4} \cdot 3461 $ x6 - x5 - 2x4 + 3x3 - x + 1 $S_6$ $1$ $1$
Next