Properties

Label 6.202471.7t7.a
Dimension $6$
Group $S_7$
Conductor $202471$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:\(202471\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.1.202471.1
Galois orbit size: $1$
Smallest permutation container: $S_7$
Parity: odd
Projective image: $S_7$
Projective field: Galois closure of 7.1.202471.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 2\cdot 31 + 16\cdot 31^{2} + 19\cdot 31^{3} + 14\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 3 + \left(a + 2\right)\cdot 31 + 30 a\cdot 31^{2} + \left(25 a + 19\right)\cdot 31^{3} + \left(8 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 3 + \left(17 a + 25\right)\cdot 31 + \left(30 a + 4\right)\cdot 31^{2} + \left(18 a + 12\right)\cdot 31^{3} + \left(8 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 11 + \left(13 a + 24\right)\cdot 31 + 17\cdot 31^{2} + \left(12 a + 19\right)\cdot 31^{3} + \left(22 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 12 + \left(30 a + 28\right)\cdot 31 + \left(24 a + 18\right)\cdot 31^{2} + \left(22 a + 11\right)\cdot 31^{3} + \left(16 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 27 + \left(29 a + 23\right)\cdot 31 + 27\cdot 31^{2} + \left(5 a + 9\right)\cdot 31^{3} + \left(22 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 a + 30 + 17\cdot 31 + \left(6 a + 7\right)\cdot 31^{2} + \left(8 a + 1\right)\cdot 31^{3} + \left(14 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.