Properties

Label 6.13_29_991.7t7.1c1
Dimension 6
Group $S_7$
Conductor $ 13 \cdot 29 \cdot 991 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$373607= 13 \cdot 29 \cdot 991 $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - 2 x^{3} + 3 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Odd
Determinant: 1.13_29_991.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 23^{2} + 22\cdot 23^{3} + 22\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 16 + \left(2 a + 4\right)\cdot 23 + \left(18 a + 4\right)\cdot 23^{2} + \left(17 a + 4\right)\cdot 23^{3} + \left(10 a + 20\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 22 + \left(20 a + 5\right)\cdot 23 + \left(4 a + 15\right)\cdot 23^{2} + \left(5 a + 21\right)\cdot 23^{3} + 12 a\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 15 + \left(12 a + 13\right)\cdot 23 + \left(a + 4\right)\cdot 23^{2} + \left(10 a + 13\right)\cdot 23^{3} + \left(8 a + 11\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 12 + \left(10 a + 5\right)\cdot 23 + \left(21 a + 18\right)\cdot 23^{2} + \left(12 a + 8\right)\cdot 23^{3} + \left(14 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + \left(21 a + 4\right)\cdot 23 + \left(13 a + 21\right)\cdot 23^{2} + \left(2 a + 3\right)\cdot 23^{3} + \left(7 a + 3\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 1 + \left(a + 12\right)\cdot 23 + \left(9 a + 4\right)\cdot 23^{2} + \left(20 a + 18\right)\cdot 23^{3} + \left(15 a + 14\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.