Properties

Label 5.3e6_5e2_7e4.6t15.2c1
Dimension 5
Group $A_6$
Conductor $ 3^{6} \cdot 5^{2} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_6$
Conductor:$43758225= 3^{6} \cdot 5^{2} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} - 12 x^{2} - 15 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 8\cdot 31 + 20\cdot 31^{2} + 27\cdot 31^{3} + 2\cdot 31^{4} + 26\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 7 + \left(6 a + 23\right)\cdot 31 + \left(15 a + 7\right)\cdot 31^{2} + \left(10 a + 26\right)\cdot 31^{3} + 23 a\cdot 31^{4} + \left(14 a + 25\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 + 7\cdot 31 + 29\cdot 31^{2} + 14\cdot 31^{3} + 20\cdot 31^{4} + 9\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 10 + \left(8 a + 7\right)\cdot 31 + \left(a + 5\right)\cdot 31^{2} + \left(17 a + 26\right)\cdot 31^{3} + \left(6 a + 17\right)\cdot 31^{4} + \left(18 a + 16\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 14 + \left(24 a + 17\right)\cdot 31 + 15 a\cdot 31^{2} + \left(20 a + 1\right)\cdot 31^{3} + \left(7 a + 6\right)\cdot 31^{4} + 16 a\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 2 + \left(22 a + 29\right)\cdot 31 + \left(29 a + 29\right)\cdot 31^{2} + \left(13 a + 27\right)\cdot 31^{3} + \left(24 a + 13\right)\cdot 31^{4} + \left(12 a + 15\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$72$$5$$(1,2,3,4,5)$$0$
$72$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.