Properties

Label 5.31_1433.6t16.1c1
Dimension 5
Group $S_6$
Conductor $ 31 \cdot 1433 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$44423= 31 \cdot 1433 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd
Determinant: 1.31_1433.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 103 a + 58 + \left(50 a + 127\right)\cdot 131 + \left(115 a + 80\right)\cdot 131^{2} + \left(43 a + 79\right)\cdot 131^{3} + \left(90 a + 68\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 80 + 67\cdot 131 + 124\cdot 131^{2} + 83\cdot 131^{3} + 98\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 a + 120 + \left(41 a + 28\right)\cdot 131 + \left(99 a + 41\right)\cdot 131^{2} + \left(41 a + 38\right)\cdot 131^{3} + \left(127 a + 8\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 58\cdot 131 + 43\cdot 131^{2} + 76\cdot 131^{3} + 10\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 82 a + 54 + \left(89 a + 14\right)\cdot 131 + \left(31 a + 4\right)\cdot 131^{2} + \left(89 a + 106\right)\cdot 131^{3} + \left(3 a + 82\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 77 + \left(80 a + 96\right)\cdot 131 + \left(15 a + 98\right)\cdot 131^{2} + \left(87 a + 8\right)\cdot 131^{3} + \left(40 a + 124\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$-1$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.