Properties

Label 5.10452289.10t13.a.a
Dimension 5
Group $S_5$
Conductor $ 53^{2} \cdot 61^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$10452289= 53^{2} \cdot 61^{2} $
Artin number field: Splitting field of 5.1.3233.1 defined by $f= x^{5} - x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.a.a
Projective image: $S_5$
Projective field: Galois closure of 5.1.3233.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 383 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 88 + 282\cdot 383 + 41\cdot 383^{2} + 170\cdot 383^{3} + 220\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 89 + 155\cdot 383 + 93\cdot 383^{2} + 241\cdot 383^{3} + 206\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 120 + 178\cdot 383 + 256\cdot 383^{2} + 144\cdot 383^{3} + 377\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 127 + 109\cdot 383 + 48\cdot 383^{2} + 292\cdot 383^{3} + 181\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 342 + 40\cdot 383 + 326\cdot 383^{2} + 300\cdot 383^{3} + 162\cdot 383^{4} +O\left(383^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.