Properties

Label 4.7177.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 7177 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$7177 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 3 x^{3} - x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.7177.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 13 + 9\cdot 13^{2} + 3\cdot 13^{3} + 7\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 5 + \left(6 a + 4\right)\cdot 13 + \left(3 a + 8\right)\cdot 13^{2} + \left(a + 3\right)\cdot 13^{3} + \left(3 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 3 + \left(2 a + 4\right)\cdot 13 + \left(7 a + 5\right)\cdot 13^{2} + \left(a + 11\right)\cdot 13^{3} + \left(3 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 5 + \left(10 a + 4\right)\cdot 13 + \left(5 a + 10\right)\cdot 13^{2} + \left(11 a + 5\right)\cdot 13^{3} + \left(9 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 12 + \left(6 a + 3\right)\cdot 13 + \left(9 a + 5\right)\cdot 13^{2} + \left(11 a + 1\right)\cdot 13^{3} + \left(9 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.