Properties

Label 4.5e3_151e4.6t10.2c1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 5^{3} \cdot 151^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$64985700125= 5^{3} \cdot 151^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 9 x^{4} - 7 x^{3} + 16 x^{2} - 20 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + \left(9 a + 12\right)\cdot 19 + \left(3 a + 15\right)\cdot 19^{2} + \left(3 a + 14\right)\cdot 19^{3} + \left(12 a + 6\right)\cdot 19^{4} + \left(4 a + 9\right)\cdot 19^{5} + \left(6 a + 17\right)\cdot 19^{6} + \left(10 a + 3\right)\cdot 19^{7} + \left(5 a + 3\right)\cdot 19^{8} + 13\cdot 19^{9} + \left(2 a + 3\right)\cdot 19^{10} + 16 a\cdot 19^{11} + 9\cdot 19^{12} + \left(7 a + 13\right)\cdot 19^{13} + \left(8 a + 12\right)\cdot 19^{14} + \left(15 a + 8\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 2 + 9 a\cdot 19 + \left(15 a + 10\right)\cdot 19^{2} + \left(15 a + 14\right)\cdot 19^{3} + \left(6 a + 15\right)\cdot 19^{4} + \left(14 a + 1\right)\cdot 19^{5} + 12 a\cdot 19^{6} + \left(8 a + 8\right)\cdot 19^{7} + \left(13 a + 17\right)\cdot 19^{8} + \left(18 a + 7\right)\cdot 19^{9} + \left(16 a + 5\right)\cdot 19^{10} + \left(2 a + 14\right)\cdot 19^{11} + \left(18 a + 12\right)\cdot 19^{12} + 11 a\cdot 19^{13} + \left(10 a + 14\right)\cdot 19^{14} + \left(3 a + 15\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 13 + 4\cdot 19 + 2\cdot 19^{2} + 13\cdot 19^{3} + 7\cdot 19^{4} + 13\cdot 19^{5} + 14\cdot 19^{6} + 13\cdot 19^{7} + 8\cdot 19^{8} + 12\cdot 19^{9} + 14\cdot 19^{10} + 16\cdot 19^{11} + 10\cdot 19^{12} + 10\cdot 19^{13} + 13\cdot 19^{14} + 8\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 12 + 11\cdot 19 + 15\cdot 19^{2} + 2\cdot 19^{3} + 6\cdot 19^{5} + 15\cdot 19^{6} + 17\cdot 19^{7} + 6\cdot 19^{8} + 8\cdot 19^{9} + 17\cdot 19^{10} + 6\cdot 19^{11} + 17\cdot 19^{12} + 16\cdot 19^{13} + 12\cdot 19^{14} + 11\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 12 a + \left(18 a + 11\right)\cdot 19 + \left(6 a + 12\right)\cdot 19^{2} + \left(14 a + 11\right)\cdot 19^{3} + \left(16 a + 2\right)\cdot 19^{4} + \left(8 a + 17\right)\cdot 19^{5} + \left(12 a + 2\right)\cdot 19^{6} + \left(3 a + 11\right)\cdot 19^{7} + \left(14 a + 14\right)\cdot 19^{8} + \left(18 a + 14\right)\cdot 19^{9} + \left(12 a + 10\right)\cdot 19^{10} + \left(18 a + 6\right)\cdot 19^{11} + 5 a\cdot 19^{12} + \left(6 a + 17\right)\cdot 19^{13} + \left(a + 13\right)\cdot 19^{14} + \left(11 a + 10\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 12 + 17\cdot 19 + 12 a\cdot 19^{2} + 4 a\cdot 19^{3} + \left(2 a + 5\right)\cdot 19^{4} + \left(10 a + 9\right)\cdot 19^{5} + \left(6 a + 6\right)\cdot 19^{6} + \left(15 a + 2\right)\cdot 19^{7} + \left(4 a + 6\right)\cdot 19^{8} + \left(6 a + 5\right)\cdot 19^{10} + 12\cdot 19^{11} + \left(13 a + 6\right)\cdot 19^{12} + \left(12 a + 17\right)\cdot 19^{13} + \left(17 a + 8\right)\cdot 19^{14} + \left(7 a + 1\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,2,3)$
$(1,4,2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,2)(4,5)$$0$
$4$$3$$(1,2,3)$$-2$
$4$$3$$(1,2,3)(4,5,6)$$1$
$9$$4$$(1,4,2,5)(3,6)$$0$
$9$$4$$(1,5,2,4)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.