Properties

Label 4.5e2_701.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 701 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$17525= 5^{2} \cdot 701 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + x^{3} - 3 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.701.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 9\cdot 29 + 10\cdot 29^{2} + 13\cdot 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 18 + \left(27 a + 11\right)\cdot 29 + \left(22 a + 9\right)\cdot 29^{2} + \left(14 a + 11\right)\cdot 29^{3} + \left(17 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 8 + \left(a + 8\right)\cdot 29 + \left(6 a + 9\right)\cdot 29^{2} + \left(14 a + 4\right)\cdot 29^{3} + \left(11 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 + 28\cdot 29 + 13\cdot 29^{2} + 17\cdot 29^{3} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + \left(12 a + 22\right)\cdot 29 + \left(7 a + 9\right)\cdot 29^{2} + \left(12 a + 22\right)\cdot 29^{3} + \left(16 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 13 + \left(16 a + 7\right)\cdot 29 + \left(21 a + 5\right)\cdot 29^{2} + \left(16 a + 18\right)\cdot 29^{3} + \left(12 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$0$
$6$$2$$(2,3)$$2$
$9$$2$$(2,3)(5,6)$$0$
$4$$3$$(1,2,3)$$1$
$4$$3$$(1,2,3)(4,5,6)$$-2$
$18$$4$$(1,4)(2,6,3,5)$$0$
$12$$6$$(1,5,2,6,3,4)$$0$
$12$$6$$(2,3)(4,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.