Properties

Label 4.318977.6t13.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $318977$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(318977\)\(\medspace = 37^{2} \cdot 233 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.11802149.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.233.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.2.11802149.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + x^{4} - 4x^{3} + 6x^{2} + 5x - 9 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: \( x^{2} + 103x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 44 a + 67 + \left(86 a + 89\right)\cdot 107 + \left(28 a + 22\right)\cdot 107^{2} + \left(64 a + 81\right)\cdot 107^{3} + \left(28 a + 80\right)\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 63 a + 29 + \left(20 a + 70\right)\cdot 107 + \left(78 a + 51\right)\cdot 107^{2} + \left(42 a + 95\right)\cdot 107^{3} + \left(78 a + 23\right)\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 63 a + 73 + \left(67 a + 58\right)\cdot 107 + \left(70 a + 57\right)\cdot 107^{2} + \left(25 a + 37\right)\cdot 107^{3} + \left(100 a + 64\right)\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 44 a + 4 + \left(39 a + 52\right)\cdot 107 + \left(36 a + 58\right)\cdot 107^{2} + \left(81 a + 69\right)\cdot 107^{3} + \left(6 a + 11\right)\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 78 + 78\cdot 107 + 67\cdot 107^{2} + 42\cdot 107^{3} + 56\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 71 + 78\cdot 107 + 62\cdot 107^{2} + 101\cdot 107^{3} + 83\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,6)$$2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)$$1$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,4,2,5,6,3)$$0$
$12$$6$$(2,6)(3,4,5)$$-1$

The blue line marks the conjugacy class containing complex conjugation.