Properties

Label 4.937024.8t23.a.a
Dimension $4$
Group $\textrm{GL(2,3)}$
Conductor $937024$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $\textrm{GL(2,3)}$
Conductor: \(937024\)\(\medspace = 2^{6} \cdot 11^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.2.19954863104.2
Galois orbit size: $1$
Smallest permutation container: $\textrm{GL(2,3)}$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.21296.1

Defining polynomial

$f(x)$$=$ \( x^{8} + 22x^{4} - 44x^{3} - 44x - 99 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 a + \left(11 a + 10\right)\cdot 13 + \left(9 a + 7\right)\cdot 13^{2} + \left(10 a + 4\right)\cdot 13^{3} + \left(7 a + 10\right)\cdot 13^{4} + \left(5 a + 9\right)\cdot 13^{5} + \left(2 a + 1\right)\cdot 13^{6} + 7 a\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 a + 2 + \left(a + 6\right)\cdot 13 + \left(3 a + 6\right)\cdot 13^{2} + \left(2 a + 5\right)\cdot 13^{3} + \left(5 a + 7\right)\cdot 13^{4} + \left(7 a + 7\right)\cdot 13^{5} + \left(10 a + 11\right)\cdot 13^{6} + \left(5 a + 4\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + 6 + \left(a + 1\right)\cdot 13 + \left(a + 5\right)\cdot 13^{2} + \left(3 a + 12\right)\cdot 13^{3} + \left(9 a + 1\right)\cdot 13^{4} + 9 a\cdot 13^{5} + \left(10 a + 6\right)\cdot 13^{6} + \left(12 a + 2\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 a + 10 + 4 a\cdot 13 + \left(2 a + 11\right)\cdot 13^{2} + \left(7 a + 3\right)\cdot 13^{3} + \left(8 a + 8\right)\cdot 13^{4} + \left(3 a + 7\right)\cdot 13^{5} + \left(2 a + 8\right)\cdot 13^{6} + \left(4 a + 1\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 4\cdot 13 + 5\cdot 13^{2} + 9\cdot 13^{3} + 7\cdot 13^{4} + 11\cdot 13^{5} + 2\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 9 a + 10 + \left(11 a + 11\right)\cdot 13 + \left(11 a + 4\right)\cdot 13^{2} + \left(9 a + 1\right)\cdot 13^{3} + \left(3 a + 8\right)\cdot 13^{4} + 3 a\cdot 13^{5} + \left(2 a + 7\right)\cdot 13^{6} + 4\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 9 + 5\cdot 13 + 2\cdot 13^{2} + 6\cdot 13^{3} + 11\cdot 13^{4} + 11\cdot 13^{5} + 8\cdot 13^{6} + 6\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 6 a + 4 + \left(8 a + 11\right)\cdot 13 + \left(10 a + 8\right)\cdot 13^{2} + \left(5 a + 8\right)\cdot 13^{3} + \left(4 a + 9\right)\cdot 13^{4} + \left(9 a + 2\right)\cdot 13^{5} + \left(10 a + 7\right)\cdot 13^{6} + \left(8 a + 3\right)\cdot 13^{7} +O(13^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,3,4,6)(2,5,8,7)$
$(1,2,4,8)(3,7,6,5)$
$(1,4)(3,5)(6,7)$
$(1,3,7)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,8)(3,6)(5,7)$$-4$
$12$$2$$(1,4)(3,5)(6,7)$$0$
$8$$3$$(1,6,8)(2,4,3)$$1$
$6$$4$$(1,2,4,8)(3,7,6,5)$$0$
$8$$6$$(1,2,6,4,8,3)(5,7)$$-1$
$6$$8$$(1,6,2,5,4,3,8,7)$$0$
$6$$8$$(1,3,2,7,4,6,8,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.