Properties

Label 4.2e3_733.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{3} \cdot 733 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$5864= 2^{3} \cdot 733 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.2e3_733.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 16 + \left(35 a + 6\right)\cdot 47 + 41\cdot 47^{2} + \left(a + 24\right)\cdot 47^{3} + \left(8 a + 19\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 18 + \left(25 a + 25\right)\cdot 47 + \left(33 a + 23\right)\cdot 47^{2} + \left(18 a + 7\right)\cdot 47^{3} + \left(37 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 11 + \left(11 a + 9\right)\cdot 47 + \left(46 a + 7\right)\cdot 47^{2} + \left(45 a + 26\right)\cdot 47^{3} + \left(38 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 13 + \left(21 a + 8\right)\cdot 47 + \left(13 a + 18\right)\cdot 47^{2} + \left(28 a + 11\right)\cdot 47^{3} + \left(9 a + 35\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 44\cdot 47 + 3\cdot 47^{2} + 24\cdot 47^{3} + 25\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.