Properties

Label 4.20725.6t13.a.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $20725$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(20725\)\(\medspace = 5^{2} \cdot 829 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.103625.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.829.2t1.a.a
Projective image: $S_3\wr C_2$
Projective field: Galois closure of 6.2.103625.1

Defining polynomial

$f(x)$$=$$ x^{6} - x^{5} + x^{4} + x^{3} + 2 x + 1 $.

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $

Roots:
$r_{ 1 }$ $=$ $ 29 + 11\cdot 41 + 18\cdot 41^{2} + 29\cdot 41^{3} + 28\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 27\cdot 41 + 2\cdot 41^{2} + 29\cdot 41^{3} + 35\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 3 + \left(13 a + 35\right)\cdot 41 + \left(26 a + 8\right)\cdot 41^{2} + \left(36 a + 10\right)\cdot 41^{3} + \left(4 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 16 + \left(27 a + 16\right)\cdot 41 + \left(14 a + 33\right)\cdot 41^{2} + \left(4 a + 11\right)\cdot 41^{3} + \left(36 a + 9\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 17 + \left(34 a + 28\right)\cdot 41 + \left(13 a + 5\right)\cdot 41^{2} + \left(9 a + 14\right)\cdot 41^{3} + \left(12 a + 36\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 29 + \left(6 a + 3\right)\cdot 41 + \left(27 a + 13\right)\cdot 41^{2} + \left(31 a + 28\right)\cdot 41^{3} + \left(28 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(3,4)$$2$
$9$$2$$(3,4)(5,6)$$0$
$4$$3$$(1,3,4)$$1$
$4$$3$$(1,3,4)(2,5,6)$$-2$
$18$$4$$(1,2)(3,6,4,5)$$0$
$12$$6$$(1,5,3,6,4,2)$$0$
$12$$6$$(2,5,6)(3,4)$$-1$

The blue line marks the conjugacy class containing complex conjugation.