Properties

Label 4.183495637.6t10.b.a
Dimension $4$
Group $C_3^2:C_4$
Conductor $183495637$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:C_4$
Conductor: \(183495637\)\(\medspace = 13^{3} \cdot 17^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.8254129.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:C_4$
Parity: even
Determinant: 1.13.2t1.a.a
Projective image: $C_3^2:C_4$
Projective stem field: Galois closure of 6.2.8254129.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 4x^{4} - 9x^{3} + 5x^{2} + 4x - 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 21 a + 18 + \left(14 a + 6\right)\cdot 23 + \left(17 a + 22\right)\cdot 23^{2} + \left(a + 15\right)\cdot 23^{3} + \left(18 a + 16\right)\cdot 23^{4} + 17\cdot 23^{5} + \left(11 a + 2\right)\cdot 23^{6} + \left(3 a + 15\right)\cdot 23^{7} + \left(11 a + 13\right)\cdot 23^{8} + \left(21 a + 21\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 a + 11 + 4 a\cdot 23 + \left(11 a + 15\right)\cdot 23^{2} + \left(11 a + 2\right)\cdot 23^{3} + \left(18 a + 2\right)\cdot 23^{4} + \left(11 a + 12\right)\cdot 23^{5} + \left(a + 12\right)\cdot 23^{6} + \left(19 a + 18\right)\cdot 23^{7} + 3 a\cdot 23^{8} + \left(5 a + 8\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 2 a + 14 + \left(8 a + 15\right)\cdot 23 + \left(5 a + 19\right)\cdot 23^{2} + \left(21 a + 1\right)\cdot 23^{3} + \left(4 a + 5\right)\cdot 23^{4} + \left(22 a + 1\right)\cdot 23^{5} + \left(11 a + 1\right)\cdot 23^{6} + \left(19 a + 11\right)\cdot 23^{7} + \left(11 a + 9\right)\cdot 23^{8} + \left(a + 7\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 15 + 4\cdot 23^{2} + 5\cdot 23^{3} + 23^{4} + 4\cdot 23^{5} + 19\cdot 23^{6} + 19\cdot 23^{7} + 22\cdot 23^{8} + 16\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 14 + 6\cdot 23 + 21\cdot 23^{2} + 5\cdot 23^{3} + 16\cdot 23^{4} + 16\cdot 23^{5} + 6\cdot 23^{6} + 18\cdot 23^{7} + 9\cdot 23^{8} +O(23^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 22 + \left(18 a + 15\right)\cdot 23 + \left(11 a + 9\right)\cdot 23^{2} + \left(11 a + 14\right)\cdot 23^{3} + \left(4 a + 4\right)\cdot 23^{4} + \left(11 a + 17\right)\cdot 23^{5} + \left(21 a + 3\right)\cdot 23^{6} + \left(3 a + 9\right)\cdot 23^{7} + \left(19 a + 12\right)\cdot 23^{8} + \left(17 a + 14\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(2,5,6)$
$(1,5,3,2)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)$$-2$
$4$$3$$(1,3,4)(2,5,6)$$1$
$9$$4$$(1,5,3,2)(4,6)$$0$
$9$$4$$(1,2,3,5)(4,6)$$0$

The blue line marks the conjugacy class containing complex conjugation.