Properties

Label 4.16713.6t13.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $16713$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(16713\)\(\medspace = 3^{3} \cdot 619 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.50139.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.1857.2t1.a.a
Projective image: $S_3\wr C_2$
Projective field: Galois closure of 6.0.50139.1

Defining polynomial

$f(x)$$=$$ x^{6} - x^{5} + 2 x^{4} - x^{3} - x^{2} + 2 x + 1 $.

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $

Roots:
$r_{ 1 }$ $=$ $ 27 + 3\cdot 31 + 9\cdot 31^{2} + 17\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 17\cdot 31 + 10\cdot 31^{2} + 8\cdot 31^{3} + 12\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 25 + \left(27 a + 4\right)\cdot 31 + \left(14 a + 13\right)\cdot 31^{2} + \left(28 a + 12\right)\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 13 + 31 + \left(25 a + 13\right)\cdot 31^{2} + \left(21 a + 6\right)\cdot 31^{3} + 13\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 5 + \left(3 a + 8\right)\cdot 31 + \left(16 a + 15\right)\cdot 31^{2} + \left(2 a + 23\right)\cdot 31^{3} + \left(30 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 27 + \left(30 a + 25\right)\cdot 31 + 5 a\cdot 31^{2} + \left(9 a + 25\right)\cdot 31^{3} + \left(30 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,3,5)$$1$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(2,4,6)(3,5)$$-1$

The blue line marks the conjugacy class containing complex conjugation.