Properties

Label 3.7_157.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 7 \cdot 157 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1099= 7 \cdot 157 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.7_157.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 317 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 116 + 117\cdot 317 + 120\cdot 317^{2} + 83\cdot 317^{3} + 188\cdot 317^{4} +O\left(317^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 168 + 199\cdot 317 + 307\cdot 317^{2} + 80\cdot 317^{3} + 173\cdot 317^{4} +O\left(317^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 170 + 64\cdot 317 + 126\cdot 317^{2} + 41\cdot 317^{3} + 56\cdot 317^{4} +O\left(317^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 181 + 252\cdot 317 + 79\cdot 317^{2} + 111\cdot 317^{3} + 216\cdot 317^{4} +O\left(317^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.